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J Phys. A: Malh. Gen. 27 (1994) 7969-7979. Primed in the UK 

Exact bounds from a new series-expansion method for 
random sequential adsorption 

S Caser and H J Hilhorst 
Laboratoire de Physique Thdorique et Hautes Energies?, BStiment 21 1. Universitd de Pais- 
Sud, 91405 Orsay cedex. France 

Received 27 July 1994 

Abstract. We presenl a new series-expansion method for the analysis of the covering fraction 
0 in a random sequential adsorption process with nearest-neighbour exclusion on a lattice. it 
1s the first method to yield sequences of increasing lower bounds and decresing upper bounds 
on B. it  is illustrated by numerical calculations for the hexagonal lattice. 

1. Introduction 

Random sequential adsorption (RSA) in its simplest form is the process in which a surface, 
represented by a two-dimensional lattice, is successively filled with particles. The particles 
are deposited irreversibly onto randomly picked lattice sites, with the condition that an 
occupied site makes the subsequent occupation of a neighbouring site impossible. Hence 
the process comes to a natural standstill when a final state is reached in which no particles 
can be deposited any more. The theoretical interest in this process focuses first of all on the 
average fraction @(t) of lattice sites occupied after a time r ,  and in particular on its value 
@(CO) in the final state. In the absence of exact solutions in two dimensions Monte Carlo 
simulations, approximate closed-form solutions, and series expansions have been used. An 
excellent overview of all this and other RSA work has been given recently by Evans [I]. 
New experimental techniques in RSA have recently been reviewed by Ramsden [Z]. 

This work deals with an expansion method for the covering fraction. Series expansions 
for lattice RSA have been considered previously by Widom [3], by Evans [4]. by Hoffman 
[5], by Baram and Kutasov [6], and by Dickman, Wang and Jensen [7]. All these authors 
write the deposition rate dO(r)/dt in the form of an initial time expansion 

(1.1) -- - 1 + C l f  + c*t* + . . . 
dt 

and construct algorithms for the calculation of the coefficients ci. When the first few 
coefficients are known, @(m) can be estimated by an extrapolation method. 

Here we present a new expansion method which focuses directly on the covering fraction 
O(w) of the final state. The method leads to exact upper and lower bounds on @(CO) and 
is, to our knowledge, the first one that does so. The bounds presented in this paper still leave 
a rather wide interval for O(w) and cannot, at lowest orders, compete with other estimates. 
However, they can be successively improved, even though the diagrams to be considered 
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become rapidly more complicated. The method starts from the observation, explained in 
section 2, that the final states on a lattice of N sites may be viewed as resulting from the 
permutations of N objects. The method's general principles are explained in sections 3 and 
4, and it is applied to the hexagonal lattice in sections 5 and 6. i n  section 7 we present 
various comments and a conclusion. 

S Caser and H J Hilhorsr 

2. Basis of expansion method 

2.1.  How afinal state is determined by apermutation 

We consider a random sequential adsorption (RSA) process with nearest-neighbour exclusion 
on a lattice of N sites, numbered from 1 to N. Let the lattice be regular and with periodic 
boundary conditions in such a way that all sites are equivalent. Let the adsorption process 
take place i n  continuous time, so that each site i. in each time interval dt, is occupied with 
a probability ydt. Upon rendering the time t dimensionless we may choose y = I .  Let 
the process start at t = 0. We associate with each site i the instant of time r; at which the 
first artempt was made to occupy it. The si are independent random variables distributed 
according to the probability law 

p( r i )dq  = e-"drj. (2. 1 ) 

We now note that, whereas thefirsr attempt to adsorb a particle on site i may be successful or 
not, any subsequent attempt to adsorb a particle on that site has no effect on the configuration. 
Therefore the full adsorption process, from the initially empty lattice until the final or 
'jammed' state, is uniquely determined by the N-component vector 

r = ( r , , ~ z , . . . , ? ~ ) .  (2.2) 

Hence averages on all realizations of the process can be calculated as averages on all r. If 
one i s  not interested in the full time evolution of the adsorption process but only in the final 
state, then it suffices to know the ordering relation between the ri, that is, the permutation 
P of N elements for which 

rp,  c rp> c . . . < rp" . (2.3) 

Hence there is a mapping from the set of permutations to the set of final states. All N! 
permutations will occur with the same probability l /N! .  Since the total number of final 
states grows only exponentially with N, the permutations determine the final states via a 
man y-to-one re1 ation. 

Finally, it is clear that instead of obtaining all permutations from 5 ,  one may just as 
well obtain them from the N-component vector 

X = ( X I r X 2 . " ' r X N )  (2.4) 

whose components are identically distributed independent random variables with an arbitrary 
distribution F ( x ; ) .  Later on we shall take for F(xj) the uniform distribution on the interval 
IO, 11. 
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2.2. Implementation: the 'sweep' algorithm 

We now describe an algorithm for generating RSA final states that is useful both for 
implementation in computer simulations and for the theoretical analysis of this work. Let an 
integer P, be assigned to each site i of a lattice of N sites. where P is a permutation of N 
elements. We now ask how, for this P 3  one can obtain the final state. From the construction 
of the permutations it is clear that this can be done by an iterative procedure consisting of 
performing alternately two types of sweeps through the lattice, numbered 1,2,3, . . . . In 
an odd sweep, only the number of occupied sites is allowed to increase: in an even sweep, 
only the number of blocked sites. The sweeps are defined as follows. 

Sweep I. Occupy each site i whose P, is less than the Pj of all its neighbours j .  

Sweep 2 .  Block the neighbours of all sites that have been occupied in sweep I 

Fork = 2 , 3 . 4 , .  . . :  
Sweep 2k - 1. Go through all sites i that are not yet occupied or blocked; occupy site i if 
Pi is less than the Pj of all its neighbours j that are neither occupied nor blocked. 

Sweep 2. Block the neighbours of all sites that have been occupied in sweep 2k - 1. 
We have observed in practice, for a hexagonal lattice of 480 sites, that after the first two 
sweeps the sites that are neither blocked nor occupied form small disjoint clusters. Typically 
'about five occupying sweeps alternating with blocking sweeps suffice to reach the final state. 

3. Arrow configurations 

For one to be able to construct the final state according to the above algorithm, it  suffices 
to know, for each pair of neighbouring sites i and j ,  the value (+1 'or - 1) of 

aij('P) = sign(P, - P,).  (3.1) 

We can represent this sign by an arrow on the bond (i, j ) ,  pointing from the site with the 
lower one of Pj and Pj to the site with the higher one. The set A of arrow configurations 
a = (ac j )  is intermediate between the set of permutations and the set of final states. Each 
permutation P leads to a unique a ( P )  and from there to a unique final state. The relation 
between the P's and the a's is many-to-one and the relation between the a's and the final 
states is also many-to-one. Whereas all permutations have the same weight, the weight 
P(cY) of an arrow configuration CY = [CY,,) is 

Here a(, , .) is the Kronecker delta and ( i ,  j )  denotes a pair of neighbouring lattice sites. 
Returning to the continuous formulation of the sum on permutations (see the final paragraph 
of section 1) we can write equation (3.2) alternatively as 

(3.3) 
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where C+ is the unit  step function. The weight of a subset A’ C A of m o w  configurations 
is obtained by summing P ( a )  on all a E A‘. Obviously we have the normalization 

S Carer and H I Hilhorst 

CP(a) = 1. 
lrsd 

The final state average of any observable X ( Q )  is 

1 
N! ( X )  - X(a(P) )  = C X ( a ) P ( a )  

“ € A  

(3.4) 

(3.5) 

The arrow configurations a and their weights (3.3) will be at the basis of our explicit 
calculations. 

4. The covering fraction 

Consider the final state determined by an arrow configuration a. Let n(a) be equal to 1 if 
in this state the origin is occupied (and equal to 0 otherwise). and let i ( a )  be equal to 1 if 
the origin is blocked (and equal to zero otherwise). Obviously, n(a)  + i ( a )  = I .  Since all 
sites are equivalent, the covering fraction @(m) is equal to 

( 4 . 1 ~ )  

(4.lb) 

Let nk(a) and &(a) be defined in the same way as n(a) and ii(a), but with respect to the 
state that prevails after sweep 2k of the sweep algorithm. Obviously, nk(a) + & ( a )  < I .  
Let 

Then, for k = 1,2,3.  . . . , the @k form an increasing sequence and the 6 k  a decreasing 
sequence such that 

There now remains to be found a way to determine the @a and 6,t. It is here that the arrow 
configurations play an important r6le. 

We first make the following general remark. If the summation on a in (4.1) is restricted 
to some subset of A, then (4.1~) obviously gives a lower bound and (4.lb) an upper bound 
on the coverage @(eo). Hence from a nested sequence of subsets that tends to A one can 
deduce, in principle, an increasing sequence of lower bounds and a decreasing sequence 
of upper bounds on @(CO). We shall now explicitly identify the subsets which will enable 
us to numerically calculate the bounds 0, and 6 k .  It will appear that these subsets are 
determined by imposing the m o w  directions in certain finite neighbourhoods of the origin. 
Our discussion will be for the example of the hexagonal lattice, but can easily be adapted 
to other lattices. 
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5. Lower bounds 

5.1. Diagrams representing subsets of arrow configurations 

We introduce the Following notation. A diagram consisting of a finite number of lattice sites 
joined by nearest-neighbour bonds, some or all of which carry arrows, will represent the 
set of all arrow configurations that coincide with the diagram on the arrow-carrying bonds 
(and are arbitrary otherwise). We shall denote such subsets of A by script letters. 

Figure 1. Examples of sea of arrow configurations. (a )  Diagram representing the set of m o w  
canfigurations with the origin surrounded by three outgoing arrows. (b) Two equivalent diagrams 
representing the Set of arrow configurations having the origin surrounded by two arrow-canying 
bonds oriented as indicated, the orientalion of the vertical bond remaining arbitrary. 

For example, the diagram of figure I(u) represents the set of all arrow configurations 
where the origin (indicated here and henceforth by a heavy dot) is surrounded by three 
outgoing arrows; the diagrams of figure I(b) both represent the set of all arrow configurations 
where the origin has one arrow incoming from the right and one outgoing to the left, the 
orientation of the third one remaining arbitrary. 

5.2. The lower bound 01 
In the algorithm of section 2, the origin is occupied in the first sweep if and only if the 
arrow configuration is in  the subset of A shown in figure l(a). We call this subset Al. 
One can immediately see that the probability for this to happen is i, and hence we have 
the lower bound 

1 
01 = -. 

4 

For the formal derivation of this result, we associate with the origin and with the three 
surrounding sites the variables xo and X I , X ~ . X ~ ,  respectively. 01 is equal to the total 
weight of the set At, for which we get. from equation (3.3) and the remark following it, 

1 
4'  

- _  - (5.2) 
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5.3. Simplified notation 

In order to calculate increasingly better lower bounds 0 2 ,  @3, . . . , it is useful to introduce 
the following simplified notation. 

S Caser and H J Hilhorst 

(1) A star of three bonds joining at a central lattice site will be replaced by a triangle. 

( la )  A vertex connected to the central site by an ingoing arrow will be decorated by an 

The arrows on the bonds will be represented on the triangle in the following way. 

U C .  

( lb )  A vertex connected to the central site by an outgoing arrow will not be decorated. 

(IC) A vertex connected to the central site by an unoriented bond will be circled. A 
vertex common to two or more triangles will never be of this type, so that no confusion 
can arise. 

These rules are illustrated by figure 2. 

Figure 2. Examples of the alternative notation introduced h subsection 5.3. The diagrams ( a )  
and (b) represent the same sets of arrow configurations as figures I@) and (b). respectively. 

(2) A set symbol B, or the diagram representing it, when occuming in an arithmetic 
expression or equation, will henceforth stand not for the set B itself, but for its contribution 
0 8  to NCO). That is, we shall write 

(5.3) 

By contrast, the usual identity between sets, when it occurs, will be written with the aid of 
the symbol L. Obviously, to the set identity 1? A C U D  corresponds the arithmetic identity 

B = C U D  

= c + 'D - c n D. (5.4) 
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In the particular case where 

equation (5.4) reduces to 

B = C  (5.6) 

w,hich holds even if the Sets B and C are distinct 

5.4. General method and lokver bound 0 2  

We now present an expansion method that leads to increasingly better upper bounds. Its 
principle is to decompose the full set A of all arrow configurations into disjoint subsets, 
some of the subsets into smaller subsets, etc. The purpose is to identify progressively 
subsets of which all arrow configurations have the origin occupied, and other subsets of 
which all arrow configurations have the origin blocked. Subsets of  the first type contribute 
to @(CO) an amount equal to their weight. and subsets of the second type contribute zero. 

We begin by expressing @(CO) as the sum of the contributions from the eight disjoint 
subsets having specified arrows on the three bonds around the origin. This gives, with the 
notation convention of the preceding subsection, 

@(CO)=A U 3 8  U 3A U A (5.7) 

where the coefficients 3 indicate that three copies of the same set, related by lattice symmetry 
operations, have to be considered. We shall denote the sets represented by the diagrams 
of equation (5.7) by A,, RI,  Rz, and 72.3, respectively. All mow configurations of AI, 

because of the three arrows coming out of the origin, have the origin occupied in the first 
sweep. The contribution of A, to @(CO) was easily found to be equal to O1 = $ in 
subsection 5.2. In the three remaining sets i n  equation (5.7) the origin is not occupied in 
the first sweep, and it may or may not be in a later sweep. Therefore, in order to find the 
contributions of RI ,Rz ,  and 723 to @(CO), a further expansion is required. We first look 
at RI.  In this set the origin will be occupied if and only if the upper vertex is blocked in 
a later sweep. which i n  turn can happen only if at least one of the two bonds that join the 
upper vertex from the upper right and left carries an arrow pointing towards that vertex. 
This condition defines the subset 

of R I ,  whose contribution to @(CO) is equal to that of RI  itself. Therefore we have, with 
the notation convention of subsection 5.3, 

We note now the set identity 

LA U Q U A U  A (5.9) 



1916 

and its counterpans obtained by rotations over multiples of 2rr/3. By substituting this 
identity into equation (5.8) we can further expand the set RI. We shall not pursue here 
the analysis of the full expansion. but only extract directly the contribution of RI to 02, 
which we shall call 0;’. This contribution is characterized by the fact that the origin is 
occupied in the third sweep, which happens if and only if at least one of the two upper 
triangles has its centre occupied in the first sweep. (We recall that the second sweep blocks 
the neighbours of the sites occupied in the first $weep.) This defines a subset in the above 
expansion, and we find 

S Caser and  H J Hilhorst 

= 2  L B -  n$ 

(5. loa) 

(5.10b) 

where the second equality is obtained by using the general identity (5.4) as well as 
lattice symmetry. The numerical values of the diagrams are equal to the weights of the 
corresponding sets. These are easily calculated according to equation (3.3) and we find 

(5.11) 

The remaining diagrams in RI will contribute only to 0,,@4, .,,. 
We turn now to Rz i n  equation (5.7), and shall directly extract from it its contribution 

@fl to @(CO). The origin will be occupied in the third sweep if and only if each of the 
two bottom vertices has at least one neighbouring site that is occupied in the first sweep. 
Therefore (3;’’ comes from the union of 2’ = 4 subsets and is given by 

of’ = L U A U  U U (5.12a) 

A - 2  % = 3  A A a  + 

(5.12b) 

where the expansion of the second equality comes from a repeated application of equation 
(5.4) and use of lattice symmetry. The numerical values are again easily calculated and we 
find 

(3g’ = 0.009 963. (5.13) 

By extending these considerations one can also determine successively the contributions of 
Rz to @,,@4, I.. . 
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We finally consider R, in equation (5.7) and we shall extract from it its conaibution 
02’ to 0 2 .  The origin will be occupied in the third sweep if and only if each of the three 
vertices has at least one neighbouring site occupied in the first sweep. Therefore 0:’ comes 
from the union of Z3 = 8 subsets whose expression is readily written down analogously to 
(5 .10~)  and (5 .12~) .  Upon expanding as in (5.10b) and (5.12b) one finds 

Upon putting in the numerical values one finds 

0:) = 0.015439. (5.15) 

By extending these considerations one can also determine successively the contributions of 
R3 to 03,04, . . . . 

By combining equations (5.1),(5.ll),(5.13), and (5.15) we find for the lower bound 0 2  
the value 

0 2  = 01 + 30:‘) + 30F’ + 0 i 3 )  

= 0.359613 

which is a considerable improvement over 0, = 0.25 (equation (5.1)) 

(5.16) 

6. Upper bounds 

The method used to calculate successively better lower bounds can also be applied, with 
some obvious modifications, to calculate the upper bounds 6 1 . 6 2 , .  . . . The upper bound 
GI  is equal to one minus the probability that the origin gets blocked in the second sweep. 
This happens if and only if at least one of the sites neighbouring the origin gets occupied 
in the first sweep. Therefore, with the same notation convention as before and indicating 
the location of the origin again by a heavy dot, we have 

& = I  - v U v U 0 
= 1 -  3 v + 3  w - & (6.1) 

The first diagram on the RHS is equal to a. The two remaining ones are new. They can 
be calculated, as in equation (3.3), by associating a variable xi with each centre and each 
vertex, and integrating on a product of ct functions that impose the arrow directions. The 
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result is that the two diagrams are equal to 
result 

S Cuser mid H J Hiihorst 

and A, respectively, which gives the final 

31 
70 

61 = - = 0.432 857. (6.2) 

7. Comments and conclusion 

The equations (5.2).[5.16), and (6.2) represent the numerical values of exact bounds on 
the final state covering fraction of an RSA process with nearest-neighbour exclusion on a 
hexagonal lattice. The two lower bounds 01 = 0.25 and 0 2  = 0.3596, and the upper bound 
6, = 0.4429 should be compared with the estimates @(CO) = 0.379 and @(CO) = 0.3759 

The low order bounds presented here are not yet competitive with the precision of a 
Monte Carlo simulation. However, our main purpose has been to show that exact bounds 
cun be calculated. Higher-order bounds on @(CO) can be found in a systematic way. For 
the one-dimensional RSA process of particles with nearest-neighbour exclusion, we have 
calculated all the lower bounds OX and found that they converge exponentially with k to 
the exactly known value (31 of  @(CO). We snongly expect that the convergence is also 
exponential in two dimensions. We have not considered here the related question of how 
best to extrapolate towards @(m) on the basis of a finite number of OX and 6 k .  

We briefly address the question of how to use the method of this work to find bounds on 
the time-dependent covering fraction @(r). At time f ,  the RSA process will have attempted 
to fi l l  a fraction 1 - e-r of all sites. A site i belongs to this fraction iff 0 < xi < 1 - e-' 
(we again take all x j ' s  uniformly distributed between 0 and 1). Finding the bounds on @(t )  
then amounts to calculating the same diagrams as for @(CO), but the integrations on the x j  

are carried out subject to the condition that sites i with xi z I - e-I, as well as the bonds 
joining them, be deleted from the diagrams. In this way it  is easy to generalize the most 
elementary of our bounds (equation (5.2)), to 

141. 

We do not pursue these questions here, nor shall we attempt to discuss applications of this 
method to RSA in continuous space. 

A final comment concerns the relation between our expansion and existing ones (see 
Evans [ I ]  for an overview). As far as we know, the existing expansions are all. implicitly 
or explicitly, in powers of the time r ,  and therefore different from ours. The question of 
how it is possible, if at all, to establish a correspondence between them is therefore left 
open. 
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